

Woolpert.com 2

http://www.woolpert.com

Woolpert.com 3

Software

This document will have several pre-requisites to complete it. The first of which are various software
and tools to process, filter, translate, visualize, and query point cloud data. These tools are all either
closed source free to use (freeware) or open source tools and libraries. This is in the interest of
providing real world examples and procedures that can be used to produce and use point cloud da-
ta.

Materials

This document will guide you through various exercises that will require various forms of data. You
should be provided the data, but in the event that you were not, most ground classified point cloud
data should suffice for the examples. If you have the provided data you can place it anywhere on
your computer but for the purposes of this document I will be placing it on my root drive. For me that
is the C:\ drive.

Open Source Disclaimer

This document uses examples and data that can be found on the PDAL website. For more in depth
tutorials and explanation please go to https://pdal.io/.

Woolpert.com 4

Version Number Noted For Possible Future Breaking Changes

Software installation will depend on other pieces of software so the order in which the tools
are installed is important. For the most part, installing and using the latest version will work.
If there is an issue and following the documents is not matching up with the software, re-
vert back to noted versions.

This walkthrough is designed to run using 64-bit Windows 10.

Name Version Link

QGIS 3.8 https://qgis.org/en/site/

Visual Studio

Code
1.38 https://code.visualstudio.com/

Chocolatey N/A https://chocolatey.org/

jq 1.5 https://stedolan.github.io/jq/

Anaconda 2019.07 http://anaconda.com

PDAL 2.0.1 https://pdal.io/

Entwine 2.1 https://entwine.io/

https://qgis.org/en/site/
https://code.visualstudio.com/
https://chocolatey.org/
https://stedolan.github.io/jq/
anaconda.com
https://pdal.io/
https://entwine.io/

Woolpert.com 5

Installation

Website Link — https://qgis.org/en/site/

1. First we will need to download the soft-

ware from the QGIS website.
2. Download the 64-bit. You will want the

QGIS Standalone Installer. (452mb)
3. Open the installer downloaded and then

click Next I Agree Next Install

and then wait for the installer to finish. Af-
ter it is complete click the Finish button.

https://qgis.org/en/site/

Woolpert.com 6

Visual studio code will be used to edit files and work with code. Visual studio code is preferred be-
cause of the open source marketplace within the IDE as well as the perks it offers with extensions,
intellisense, and customization.

Installation

Website Link— https://code.visualstudio.com/

1. The first step is to download the visual studio code installer. (51mb)
2. Once the installer has completed downloading run it and click I Accept Next Next

Next Install and wait while the installer runs. After it completes click Finish.

Visual Studio should be installed and ready to use. Explore the program, check out the extension
marketplace where you can find tools to assist in coding and development.

https://code.visualstudio.com/

Woolpert.com 7

Chocolatey is a package manager for windows. Imagine packages as software applications. These
applications can have a GUI (Graphical User Interface) or be run in a terminal or PowerShell. Choco-
latey makes an easy unified tool to manage all applications and development environments.

The installation of Chocolatey is not a typical installation. It will be installed using the PowerShell application on
your windows machine.

Installation

Website Link— https://chocolatey.org/

1. Open Windows PowerShell as an administrator.
2. Click the link above to open the Chocolatey website. After the website loads click on the ‘Install

Chocolatey Now’ button. Scroll down on the page until you see a section labeled Install with
Powershell.exe.

3. Paste this command into PowerShell. Click enter to run the command and wait until it finishes.
After this is completed running, close PowerShell and re-open it again as administrator.

4. Type in choco --version into PowerShell to test if the installation ran correctly. It should look like
the image below.

https://chocolatey.org/

Woolpert.com 8

jq allows you to simplify the management and readability of JSON data. You can use it to slice, filter,
map, and transform structured data with ease.

jq will be the first tool that we install using Chocolatey. This process will be simple and easy because of Choco-

latey. Typically you must download the dll and exe files, place them on the computer, and manually path them to
the computer’s environment variables. This can be a convoluted, confusing and frustrating process. With one
command Chocolatey makes this a very simple and streamlined process.

Installation

1. Open PowerShell as an administrator.
2. Type choco install jq into PowerShell and hit enter. You will encounter a part of the process

where you will be asked if you want to run the script. Type Y and hit enter.
3. Wait until the installation is completed and then close PowerShell. We will close and re-open

PowerShell to make sure the installation process is full and completed.
4. Open PowerShell (admin not required) and type jq --version and hit enter. If this installation was

successful, you should see a version number. At the time of writing this document it will be jq-
1.5.

Woolpert.com 9

Anaconda is invaluable in setting up a development environment. Too many times as a developer or
power user you are forced to use different tools and libraries that are dependent on separate envi-
ronments that may clash with one another. Anaconda allows you to sandbox environments to allow
easy-to-use development processes and management of tools.

Installation

Download Link - https://www.anaconda.com/distribution/

1. Download Anaconda from the Anaconda website. Choose the Windows Python 3.7 64-bit ver-

sion. (486 mb)

2. Once the download has completed run the installer. When the installer opens click Next I

Agree (All Users) Next Next Install Next Next Finish.
3. If the program installed correctly you should be able to open it. Go to the start menu and search

for Anaconda and open up the program.

https://www.anaconda.com/distribution/

Woolpert.com 10

PDAL is a cousin to GDAL. PDAL provides a suite of command-line applications that users can con-
veniently use to process, filter, translate, and query point cloud data.

We are going to use Anaconda to install PDAL. This will ensure that we get exactly what we need for
PDAL to install correctly but also allow us to set up our environments that might have conflicting ver-
sions or toolsets.

Installation

Download Link—https://pdal.io/download.html

1. First, let’s make sure that Anaconda is open. To do this search for it on Windows search bar or
click on the Desktop icon.

2. Once Anaconda is open, click on the Environments tab.

3. Inside the environments tab, click on the Create button .

4. After a dialog box pops up, type in a name for the new environment. I will use PDAL. Make sure
that you have python checked and it’s set to the highest version of 3. At the time of this docu-
ment the version is 3.7. Once you have filled out everything, click on Create.

5. After the process is completed with creating the PDAL environment, you will need to install
PDAL. Anaconda makes this process very simple. Go to the PDAL menu, click the play button,
and click on Open Terminal.

6. When you read the terminal, you should see (PDAL) or the name you gave the environment cur-

rently in terminal. If you don’t see this then you might have opened the base environment. To fix
this, close out of this terminal and open up the one you created for PDAL.

7. To install PDAL you can find the command on the PDAL website for conda but you will want to
type conda install –c conda-forge pdal python-pdal gdal. You will get prompted to accept install.
Type Y and press enter to accept this installation.

8. Once the installation is complete, type pdal --version and press enter. If PDAL was installed cor-
rectly in this environment, you should get a printout of the version. As of the time of this docu-
ment the version number is pdal 2.0.1 (git-version: Release).

https://pdal.io/download.html

Woolpert.com 11

We will use Entwine to visualize las files. Entwine is not only free but it is also perfect for visualizing
massive amounts of data.

Installation

Website Link — https://entwine.io/quickstart.html

1. First, let’s make sure that Anaconda is open. To do this, search for it on windows search bar or
click on the Desktop icon.

2. Once Anaconda is open, click on the Environments tab.

3. Inside the environments tab, click on the Create button .

4. After a dialog box pops up, type in a name for the new environment. I will use Entwine. Make sure
that you have Python checked and it’s set to the highest version of 3. At the time of this docu-
ment the version is 3.7. Once you have filled out everything click on Create.

5. After the process is completed with creating the Entwine environment you will need to install En-

twine. Anaconda makes this process very simple. Go to the entwine menu, click the play button,
and click on Open Terminal.

6. When you read the terminal you should see (Entwine) or the name you gave the environment cur-
rently in terminal. If you don’t see this then you might have opened the base environment. To fix
this close out of this terminal and open up the one you created for entwine.

7. To install Entwine you can find the command on the entwine website for Conda but you will want
to type conda install –c conda-forge entwine. You will get prompted to accept install. Type Y and
press enter to accept this installation.

8. Once the installation is complete, type entwine --version and press enter. If Entwine was in-
stalled correctly in this environment, you should get a printout of the version. As of the time of
this document the version number is entwine 2.1.0.

9. Additionally you will want to run the command conda install –c conda-forge nodejs=11.14.0 -y
and then npm install http-server –g. This will be used to create a server to view the Entwine data-
bases.

https://entwine.io/quickstart.html

Woolpert.com 12

Starting with this section, we will start to use all of the software that we have installed so far. Go
ahead and open the pdal terminal.

Print the First Point

1. Using the same process as we used before, we will want to open Anaconda.

2. Go to the Environments tab and click on the pdal environment tab.

3. Click the play button on the pdal tab and open in terminal.

4. Now that the terminal is open, change the directory to exercise 01. You can use this command if
you are using the provided data and place on the C:\ drive. cd C:\exercises\01_PDAL_Info.

5. Type in pdal info interesting.las –p 0 and hit enter.

Congratulations! You have displayed all of
the information about the first point in the
las file.

Woolpert.com 13

In the last step we printed the information about only one point. Now we want to view all of the infor-
mation on the las file.

Printing File Metadata

1. Type pdal info interesting.las --metadata and press enter.

A huge blob of text will read out. You can also see this in the screenshot below. This will be all of the

header information inside this las file. What you are seeing is a JSON object. This is how PDAL dis-
play’s information for easier viewing, processing, and parsing. All of this JSON data looks like a jum-

bled mess.

 You can read more about JSON data here. https://www.json.org/

https://www.json.org/

Woolpert.com 14

Filtering Out the Results

We have all of this metadata but to find anything useful or specific it might take some time to read
through it all. For example, if you wanted to know if the file is compressed you can find this in the
header file which might be time consuming to find unless we get it with filtering. Earlier we installed
jq which is a JSON parser, meaning that we can filter out what we don’t want to see and only get ex-
actly what we want.

1. Type in the command pdal info interesting.las --metadata ^ | jq “.metadata.compressed”. Note
how there are four spaces after the caret. This is important for it to work.

Above you can see that this particular file is not compressed.

Searching Near a Point

Here we will use PDAL to find points near a given search location. Our scenario is a simple one: we
want to find the two points nearest to the midpoint of the bounding cube of our interesting.las data
file. We need to find the midpoint of the bounding cube. To do that, we need to print the --all info for
the file and look for the bbox output.

1. Type in the command pdal info interesting.las --all ^ | jq .stats.bbox.native.bbox. This will get
the bbox for us. Note how there are four spaces after the caret. This is important for it to work.

Woolpert.com 15

Now that we have the bbox we will want to find the average of the X, Y, and Z values. This is how we
will get the center point of the bbox.

x = 635619.85 + (638982.55 - 635619.85)/2 = 637301.20

y = 848899.70 + (853535.43 - 848899.70)/2 = 851217.57

z = 406.59 + (586.38 - 406.59)/2 = 496.49

With our “center point” that we just created we will want to use the --query option to pdal info and

return the three nearest points to it.

2. Use the command pdal info interesting.las ^ query “637301.20, 851217.57, 496.49/3” this will
print out the three points and their associated information. We are not using jq here so the four
spaces after the caret is not required.

Woolpert.com 16

 For this exercise we will need to change our directory.

Use the command cd c:\exercises\02_PDAL_Translation. This will put our terminal into the folder
for our second exercise.

Compression

1. Use the command pdal translate interesting.las ^ interesting.laz. This will compress the las data
to laz format.

2. Now we want to verify that the data is in fact compressed. We can do this simply by executing
two commands. The first command is dir interesting.las, this will give us the information on the
las file. The second command is dir interesting.laz, which will give us the information on the laz
file.

You can see here that the size of the file in the LAZ is truly compressed. Typical LASzip compression
is 5:1 to 8:1, depending on the type of LiDAR. It is a compression format specifically for the ASPRS
LAS model, however it will not be efficient for other types of point cloud data.

Woolpert.com 17

Reprojections

We will now use pdal to reproject ASPRS LAS data. The current projection is
NAD_1983_Oregon_Statewide_Lambert_Feet_Intl but we want to project the data to EPSG: 4326

1. Use the command pdal translate interesting.las ^ translated.las ^ reprojection ^ --
filters.reprojection.out_srs=“EPSG:4326”

2. Let’s take a look at the bbox of the file to see if we have re-projected that data. Use the command
pdal info translated.las --all ^ | jq .stats.bbox.native.bbox. You can see the results below.

The image above shows us the data but it’s not correct. --all dumps all information about the file
and we then use the jq command to extract out the “native” (same coordinate system as the file it-
self) bounding box. As we can see, the problem is we only have two decimal places of precision on
the bounding box. We are converting to a geographic coordinate system, this is not enough preci-
sion.

Some formats, like writers.las do not automatically set scaling information. PDAL cannot really do
this for you because there are a number of ways for this to be tripped up. For latitude/longitude data,
you will need to set the scale to smaller values like 0.0000001. Additionally, las uses an offset value
to move the origin value. Use PDAL to set that to auto so you don’t have to compute it.

3. The command below we will use to perform the transformation correctly. Let type this into our
terminal or copy/paste and see what we get.

pdal translate ^ interesting.las ^ translated2.las ^ reprojection ^ --
filters.reprojection.out_srs=“EPSG:4326” ^ --writers.las.scale_x=0.0000001 ^ --
writers.las.scale_y=0.0000001 ^ --writers.las.offset_x=“auto” ^ --writers.las.offset_y=“auto”

Woolpert.com 18

4. To see if this transformation ran keeping accurate precision how we expected it to, we can run
the info command again to verify the X, Y, and Z dimensions.

 pdal info translated2.las --all ^ | jq .stats.bbox.native.bbox

This command is the same as before except we are now looking at our new and improved pro-
cessed file.

You can see in now that our data has the correct precision and has been transformed correctly.

5. We can type in a command to check the spatial reference. Use pdal info translated2.las --
metadata ^ | jq .metadata.comp_spatialreference. This will print out the file’s spatial reference.

You can see that this changed the projection to EPSG 4326.

Woolpert.com 19

First we need to change the directory. Use the command cd C:\exercises\03_PDAL_Analysis. This
will put our terminal into the folder for our third exercise.

Finding the Boundary

1. We can export the boundary of an las file using PDAL. This can be used in other software to per-

form more analysis. The command to get a boundary is pdal info ^ uncompahgre.laz ^ --
boundary.

You can see that this command outputs a lot of information, none of which is entirely useful. This is
called a geoJSON. A geoJSON is much like a JSON file, the only difference being is that it is struc-
tured where geospatial information is stored in a format that has been set as a standard.

Woolpert.com 20

Instead of this format, we are going to export the boundary in a format that we can visualize using
QGIS.

2. Use the command pdal tindex create --tindex boundary.shp --filespec uncompahgre.laz

This command should have exported the data into a SQLite database. We can visualize this data by
using QGIS.

3. Use the windows search bar or the desktop icon to open QGIS.

4. Once QGIS is open click on Layer at the top.

5. Under Layer click on Add Layer.

6. Under Add Layer click on Add Vector Layer.

7. After the dialog box opens go to the source area and click on the ellipsis (…).

8. Browse to the exercise 3 folder and open the boundary.shp file.

9. Click add on the dialog box then click close.

You can now see the boundary in QGIS that we created for our las file.

Woolpert.com 21

Colorizing Point with Imagery

The uncompahgre.laz when visualized can be viewed by elevation, return number, intensity, etc.
What it does not have yet is a colorized version. We can take an un-colorized point cloud and add a
red, green, blue value to each point. We will be using pdal, visual studio code and entwine for this
part. We will be creating something called a pipeline. This is a syntactic sugar way for pdal to exe-
cute many commands in a sequence. This can also be chained together to batch process large
workloads. Open the las file in http://plas.io to view this current las file.

1. Open Visual Studio Code by searching for it or clicking the icon on the desktop.

2. Create a file called colorize.json and save it into our folder containing exercise 03.

3. This is where we will create our pipeline.

Use the image here to create the correct
pipeline.

Pipeline Breakdown

Reader

The first thing in our pipeline is telling pdal
what we will work with (uncompahgre.laz).

Filters.colorization

The filters.colorization pdal filter does most of
the work for this operation. We’re going to use
the default data scaling options. This filter wil
create pdal dimension in Red, Green, and Blue.

Filters.range

A small challenge is the raster will colorize many points with NODATA values. We are going to use
the filters.range to keep any points that have Red>=1.

Writers.las

We could just define the uncompahgre_colored.laz filename, but we want to add a few options to
have finer control over what is written.

4. After you have created your pipeline file save it, return to the pdal terminal, and run pdal pipeline
colorize.json.

http://plas.io

Woolpert.com 22

Visualize LAS Data

Now that you have ran your pipeline you should have a new laz file that was outputted. Let’s use en-
twine to view this data to make sure that the colorization is complete.

1. First we need to place our file inside of a folder. Go to your exercise 03 folder and create a folder
called colorized.

2. Move the uncompahgre_colorized.laz file into this folder.

3. Open or return to the terminal that you used for entwine.

4. Change your directory to cd c:\exercises\03_PDAL_Analysis.

5. Run entwine build –i colorized –o colorized.

6. Now that we have created our entwine workspace or ept file we can start hosting it.

7. Run cd .. to go up a directory.

8. Run http-server 03_PDAL_Analysis –p 8080 to start the server.

9. In your browser go to http://potree.entwine.io/data/view.html?r=%22http://localhost:8080/
colorized%22

You should now be looking at a colorized point cloud that you not only colorized but hosted a server
for.

http://potree.entwine.io/data/view.html?r=%22http://localhost:8080/colorized%22
http://potree.entwine.io/data/view.html?r=%22http://localhost:8080/colorized%22

Woolpert.com 23

Ground Classify LAS Data

Here we will use pdal to classify ground returns using the Simple Morphological Filter (SMRF) tech-
nique.

1. Open http://plas.io and open the csite_original.laz.

2. Change the colorization to classification.

You can here that the entire las dataset has one classification. Before we can create surfaces or do
any real analysis work, we need to first classify the ground. pdal can do that for us.

3. Open the pdal terminal in anaconda.

4. Change your directory to cd
c:\exercises\03_PDAL_Analysis.

5. Run pdal translate csite_original.laz –o
csite_ground.laz smrf –v 4. This command
will attempt to ground classify the lidar.
This will create a new file.

6. Let’s open the file inside of plas.io. You can
see that this did a good job at classifying
the ground but there is still noise below the
ground. This will not produce the desired
results when creating surfaces. Let’s clean
this up a bit.

http://plas.io

Woolpert.com 24

7. Run the command pdal translate csite_original.laz –o ground.laz smrf range --
filters.range.limits=“Classification[2:2]” -v 4.

If you open this up in plas.io then you can
see we only exported the ground points.
There is still noise under the ground. We
will now use the translate command to
stack the filters.outlier and filters.smrf
stages.

8. Run the command pdal translate csite_original.laz -o csite_ground_denoised.laz outlier smrf
range --filters.outlier.method=“statistical” --filters.outlier.mean_k=8 --
filters.outlier.multiplier=3.0 --filters.smrf.ignore=“Classification[7:7]” --
filters.range.limits=“Classification[2:2]” --writers.las.compression=true --verbose 4.

This command will give us the ground
with no noise. Switch the view to the
height map.

Woolpert.com 25

Generating a DTM and Hillshade

This part will use PDAL to generate an elevation surface model using the output from the identifying
ground exercise, PDAL’s writers.gdal operation, and gdal to generate an elevation and hillshade sur-
face from point cloud data. We will be using piplines again to do this process.

1. Inside of Visual Studio Code create a new file called dtm.json.

2. Fill in the above code into Visual Studio Code.

3. Run the pipeline pdal pipeline dtm.json.

4. File were written but we need to use QGIS to visualize it. Open QGIS.

5. Click Layer.

6. Click Add Layer.

7. Click Add Raster Layer.

8. Click the ellipsis and find the dtm.tif file in your exercise 03 folder.

9. Click Add and then click Close.

10. Right click on the dtm in the layers tab and click properties.

11. Go to the symbology table and under Render Type choose Singleband pseudocolor then click
Apply and OK.

12. QGIS provides us access to GDAL processing tools, and we are going to use that to create a hill-
shade of our surface. Choose Raster.

13. Click Analysis and then click Hillshade.

14. Click the ellipsis under the Hillshade marker and choose Save to File.

15. Save the file under the exercise 03 folder as Hillshade.

16. Click Run to run the process and when the process is complete click close.

Woolpert.com 26

You can see that this created a Hillshade.tif file within your exercise 03 folder and automatically
added that file to your QGIS layers tab.

